
Practice Final Exam
Math 214

(the actual final will be a little shorter)

1.(20 pts) Test the series for convergence or divergence

a)
∞∑
n=1

(
3n2 + n+ 2

2n2 + 4n+ 7

)n
Solution.

Root test.

lim
n→∞

n
√
an = lim

n→∞

3n2 + n+ 2

2n2 + 4n+ 7
=

3

2
> 1.

Divergent.

b)
∞∑
n=1

en(n+ 1)2

n!

Solution.

Ratio test.

lim
n→∞

an+1

an
= lim

n→∞

en+1(n+ 2)2

(n+ 1)!

n!

en(n+ 1)2

= lim
n→∞

e

n+ 1

(n+ 2)2

(n+ 1)2
= 0 < 1.

Convergent.

c)
∞∑
n=1

sin2 n

n2 + 1

Solution.

Comparison test.

sin2 n

n2 + 1
≤ 1

n2 + 1
≤ 1

n2
.

Since
∞∑
n=1

1

n2
is convergent as a p-series with p > 2, the original series

is also convergent.

d)
∞∑
n=1

(
1 +

1

n

)n
Solution.

The nth-term test for divergence.



lim
n→∞

(
1 +

1

n

)n
= lim

n→∞
en ln(1+ 1

n) = lim
n→∞

e
ln(1+ 1

n)
1/n

= lim
n→∞

e

−1/n2

(1+ 1
n)(−1/n2) = e 6= 0.

Divergent.

2.(10 pts) Determine whether the series is absolutely convergent, conditionally
convergent, or divergent.

∞∑
n=2

(−1)n−1 1

n lnn
.

Solution.
∞∑
n=2

(−1)n−1 1

n lnn
is an alternating series. un =

1

n lnn
is a decreasing

sequence whose limit is zero. Therefore the series is convergent by the
alternating series test.

Now consider
∞∑
n=2

|an| =
∞∑
n=2

1

n lnn
.

Let f(x) =
1

x lnx
. Clearly, f is continuous, positive, decreasing func-

tion on [2,∞). Use the integral test.∫ ∞
2

f(x)dx =

∫ ∞
2

1

x lnx
dx = ln ln x

∣∣∣∞
2

=∞.

Therefore,
∑∞

n=2 |an| is divergent.

So, the original series is conditionally convergent.

3.(10 pts) Find the radius of convergence and interval of convergence of the series
∞∑
n=1

(x+ 1)n

3
√
n 3n

.

Solution.

We will use the ratio test.

lim
n→∞

|x+ 1|n+1

3
√
n+ 13n+1

3
√
n 3n

|x+ 1|n
= lim

n→∞

|x+ 1|
3

3

√
n

n+ 1
=
|x+ 1|

3

The series converges if the latter limit is less than 1. That is,

|x+ 1| < 3,



which means that −3 < x + 1 < 3 or x ∈ (−4, 2). Thus, the radius of
convergence equals R = 3.

Now test the endpoints of the interval (−4, 2).

If x = −4, then the series becomes

∞∑
n=0

(−3)n

3
√
n 3n

= −
∞∑
n=0

(−1)n

3
√
n
.

The latter is an alternating series. It converges by the alternating series
test, since un = 1/ 3

√
n is a decreasing sequence tending to zero.

If x = 2, then the series becomes

∞∑
n=0

3n

3
√
n 3n

=
∞∑
n=0

1
3
√
n
.

This is a p-series with p = 1/3. Thus, divergent.

Therefore, the interval of convergence of the original power series is
[−4, 2).

4.(10 pts) Find the Taylor series for the function f(x) = x−2 at x = 1.

Solution.

The Taylor series for a function f centered at x = 1 is given by

∞∑
n=0

f (n)(1)

n!
(x− 1)n.

Therefore, we need to compute the derivatives of all orders of the given
function at x = 1.

f ′(x) = (−2)x−3,

f ′′(x) = (−2)(−3)x−4,

f ′′′(x) = (−2)(−3)(−4)x−5,

· · ·
f (n)(x) = (−2)(−3)(−4) · · · (−n)(−n−1)x−n−2 = (−1)n(n+1)! x−n−2.

Thus, for all n ≥ 0,

f (n)(1) = (−1)n(n+ 1)!.

The Taylor series becomes

∞∑
n=0

(−1)n(n+ 1)!

n!
(x− 1)n =

∞∑
n=0

(−1)n(n+ 1)(x− 1)n.



5.(20 pts) a) Find the slope of the tangent line to the curve r = 1 + cos θ at the
point where θ = π/2.

b) Find the area of the region that lies inside the curve r = 1 + cos θ
and outside the curve r = 1.

Solution.

a) Using the relation between polar and Cartesian coordinates

x = r cos θ, y = r sin θ,

we get
x = (1 + cos θ) cos θ = cos θ + cos2 θ,

y = (1 + cos θ) sin θ = sin θ + cos θ sin θ.

Now differentiate with respect to θ.

dx

dθ
= − sin θ − 2 cos θ sin θ,

dy

dθ
= cos θ − sin2 θ + cos2 θ.

The slope is given by

dy

dx
=

dy
dθ
dx
dθ

=
cos θ − sin2 θ + cos2 θ

− sin θ − 2 cos θ sin θ

Now substitute the given value θ = π/2.

dy

dx

∣∣∣
θ=0

= 1.

6.(10 pts) Find the length of the curve r = cos3(θ/3), 0 ≤ θ ≤ π/4.

Solution.

L =

∫ π/4

0

√
cos6(θ/3) + (−3 sin(θ/3)

1

3
cos2(θ/3))2dθ

=

∫ π/4

0

√
cos6(θ/3) + sin2(θ/3) cos4(θ/3)dθ

=

∫ π/4

0

cos2(θ/3)
√

sin2(θ/3) + cos2(θ/3)dθ

=

∫ π/4

0

cos2(θ/3)dθ =
1

2

∫ π/4

0

(1 + cos(2θ/3))dθ

=
1

2
(θ +

3

2
sin(2θ/3))

∣∣∣π/4
0

=
π

8
+

3

4
sin(π/6) =

π + 3

8
.



7.(30 pts) a) Find the area of the triangle with vertices P1(2,−1, 3), P2(4, 0, 3),
and P3(3,−2, 4).

b) Find an equation of the plane passing through these points.

c) Find parametric equations of the line passing through P1 and per-
pendicular to the plane in part (b).

Solution.

a)
−−→
P1P2 = 〈2, 1, 0〉,

−−→
P1P3 = 〈1,−1, 1〉.

−−→
P1P2 ×

−−→
P1P3 =

∣∣∣∣∣∣
i j k
2 1 0
1 −1 1

∣∣∣∣∣∣ = i− 2j− 3k.

|
−−→
P1P2 ×

−−→
P1P3| =

√
14.

The area of the triangle:
1

2
|
−→
PQ×

−→
PR| =

√
14/2.

b) The plane passing through these points is

(x− 2)− 2(y + 1)− 3(z − 3) = 0,

x− 2y − 3z + 5 = 0.

c) The line is
x = 2 + t,
y = −1− 2t,
z = 3− 3t,

t ∈ R.

8.(10 pts) Find the vector projection of b = 〈6, 2,−4〉 onto a = 〈2,−1,−2〉 and
the scalar component of b in the direction of a.

Solution.

Vector projection: projab =
a · b
|a|2

a =
18

9
(2i− j− 2k) = 4i− 2j− 4k.

Scalar component:
a · b
|a|

=
18

3
= 6.

9.(10 pts) Find the angle between the planes x+y+3 = 0 and x+2y+2z−1 = 0.

Solution.

The angle between the planes is the (acute) angle between their nor-
mals: n1 = i + j, n2 = i + 2j + 2k.

cos θ =
n1 · n2

|n1| |n2|
=

3√
23

=
1√
2
.

Therefore, θ = π/4.



10.(10 pts) Find the distance from the point P (2,−1, 1) to the plane
3x+ y − 5z + 1 = 0.

Solution.

D =
|3 · 2 + 1 · (−1)− 5 · 1 + 1|√

32 + 12 + (−5)2
=

1√
35
.

11.(10 pts) Find parametric equations for the line that is tangent to the curve
r(t) = ln(1 + t)i + (1 + t)j− sin tk at t = 0.

Solution.

r(0) = j,

dr

dt
=

1

1 + t
i + j− cos tk,

dr

dt
(0) = i + j− k.

Tangent line:

x = τ,
y = 1 + τ,
z = −τ,

−∞ < τ <∞.

12.(10 pts) Find the length of the curve
r(t) = (sin t− t cos t)i + (cos t+ t sin t)j + t2 k, 0 ≤ t ≤ 1.

Solution.

v =
dr

dt
= (cos t− cos t+ t sin t)i + (− sin t+ sin t+ t cos t)j + 2tk

= t sin ti + t cos tj + 2tk

|v| =
√
t2 sin2 t+ t2 cos2 t+ 4t2

=
√

5t2 =
√

5 t.

L =

∫ 1

0

|v|dt =
√

5

∫ 1

0

tdt =

√
5

2
t2
∣∣1
0

=

√
5

2
.



13.(10 pts) Find the curvature of the curve r(t) = (sin t−t cos t)i+(cos t+t sin t)j+k
at the point where t = 2.

Solution.

v =
dr

dt
= (cos t− cos t+ t sin t)i + (− sin t+ sin t+ t cos t)j

= t sin ti + t cos tj

|v| =
√
t2 sin2 t+ t2 cos2 t = t.

T =
1

|v|
v = sin ti + cos tj

dT

dt
= cos ti− sin tj

∣∣∣∣dTdt
∣∣∣∣ =

√
cos2 t+ sin2 t = 1

κ =
1

|v|

∣∣∣∣dTdt
∣∣∣∣ =

1

t
.

κ(2) =
1

2
.

14.(10 pts) Find the limit or show that the limit does not exist.

lim
(x,y)→(0,0)

xy2

x2 + y2
.

Solution.

Use sandwich theorem.

0 ≤
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣xy2

y2

∣∣∣∣ = |x|.

Since |x| → 0, as (x, y)→ (0, 0), we get

lim
(x,y)→(0,0)

xy2

x2 + y2
= 0.

15.(10 pts) Find the derivative of the function

f(x, y, z) = x2 − 2xy + xz + z2 + 2x− y

at P0(1, 1, 1) in the direction of v = 2i−2j+k. In what direction is the
derivative of f at P0 maximal? Find the derivative in this direction.



Solution. Since v is not unit, we will find a unit vector in the direction
of v.

u =
v

|v|
=

2

3
i− 2

3
j +

1

3
k.

∇f = (2x− 2y + z + 2)i + (−2x− 1)j + (x+ 2z)k,

∇f
∣∣∣
(1,1,1)

= 3i− 3j + 3k.

Therefore,

(Duf)
∣∣∣
(1,1,1)

= ∇f
∣∣∣
(1,1,1)

· u = 5.

The derivative is maximal in the direction of ∇f
∣∣∣
P0

, which is

1√
3

i− 1√
3

j +
1√
3

k.

The derivative in this direction is |∇f |
∣∣∣
P0

= 3
√

3.

16.(10 pts) Find an equation of the tangent plane to the surface x2+3y2+2z2 = 12
at the point P0(1, 1, 2).

Solution.

Let f(x, y, z) = x2 + 3y2 + 2z2 − 12 = 0. Then

∇f = 2x i + 6y j + 4z k.

∇f
∣∣∣
P0

= 2 i + 6 j + 8 k.

The tangent plane is given by the equation:

2(x− 1) + 6(y − 1) + 8(z − 2) = 0,

2x+ 6y + 8z − 24 = 0.

17.(10 pts) Find all the local maxima, local minima, and saddle points of the func-
tion

f(x, y) = 4x2 − x3 + y2 + 2xy.

Solution.

fx = 8x− 3x2 + 2y = 0

fy = 2y + 2x = 0

From the second equation, y = −x. Substitute this into the first equa-
tion.

6x− 3x2 = 0,



3x(2− x) = 0,

x = 0 or x = 2.

We get two critical points (0, 0) and (2,−2).

Now find D = fxxfyy − f 2
xy.

fxx = 8− 6x, fyy = 2, fxy = 2.

So, D = (8− 6x)2− 4 = −12x+ 12.

Point (0, 0): D
∣∣∣
(0,0)

= 12 > 0, fxx

∣∣∣
(0,0)

= 8 > 0. Local minimum at

(0, 0). f(0, 0) = 0.

Point (2,−2): D
∣∣∣
(2,−2)

= −12 < 0. Saddle point at (2,−2).

18.(10 pts) Find the absolute maximum and minimum values of the function f(x, y) =
x2 + xy + y2 − 6x on the rectangular region 0 ≤ x ≤ 5, −3 ≤ y ≤ 3.

Solution.

First find the critical points.

fx = 2x+ y − 6 = 0

fy = x+ 2y = 0

We get x = −2y, then

−4y + y − 6 = 0,

y = −2,

x = 4.

The point (4,−2) belongs to the rectangle. f(4,−2) = 16−8+4−24 =
−12.

Now consider the sides of the rectangle.

i) x = 0, −3 ≤ y ≤ 3.
f(0, y) = y2.

Critical point at y = 0. So, we get the point (0, 0). f(0, 0) = 0.
Endpoints of this side: (0,−3) and (0, 3). f(0,−3) =9, f(0, 3) = 9.

ii) y = 3, 0 ≤ x ≤ 5.

f(x, 3) = x2 − 3x+ 9.

d
dx

(x2 − 3x + 9) = 2x − 3. Critical point at x = 3/2. So, we get the
point (3/2, 3). f(3/2, 3) = 9/4. Endpoints of this side: (0, 3) and (5, 3).
f(5, 3) =19, the value at the other endpoint was computed above.



iii) x = 5, −3 ≤ y ≤ 3.

f(5, y) = y2 + 5y − 5.

d
dy

(y2+5y−5) = 2y+5. Critical point at y = −5/2. So, we get the point

(5,−5/2). f(5,−5/2) = −45/4. Endpoints of this side: (5,−3) and
(5, 3). f(5,−3) = -11, the value at the other endpoint was computed
above.

iv) y = −3, 0 ≤ x ≤ 5.

f(x,−3) = x2 − 9x+ 9.

d
dx

(x2 − 9x + 9) = 2x − 9. Critical point at x = 9/2. So, we get the
point (9/2, 3). f(9/2, 3) = −45/4. Endpoints of this side: (0, 3) and
(5, 3). The values at the endpoints were computed above.

Now analyze all the candidates. The absolute maximum is 19, achieved
at (5, 3). The absolute minimum is -12, achieved at (4,−2).

19.(10 pts) Find the maximum and minimum values of f(x, y) = x2 + y2 subject
to the constraint x2 + xy + y2 = 1.

Solution.

fx = 2x, fy = 2y

g(x, y) = x2 + xy + y2 − 1,

gx = 2x+ y, gyx+ 2y

Then ∇f = λ∇g gives
2x = λ(2x+ y)

2y = λ(x+ 2y)

From the 1st equation,
2x(1− λ) = λy

So, y = 2x1−λ
λ

. Put this into the second equation.

4x
1− λ
λ

= λx+ 4x(1− λ)

4x(1− λ) = λ2x+ 4x(1− λ)λ

x[4(1− λ)− λ2 − 4(1− λ)λ] = 0

x = 0 or 3λ2 − 8λ+ 4 = 0

λ = 2 or
2

3

If x = 0, then y = 0 as well, but (0, 0) does not satisfy x2 +xy+y2 = 1.



Now consider λ = 2. Then y = −x. Putting into x2 + xy + y2 = 1, we
see

x2 − x2 + x2 = 1

So x = ±1, and and since y = −x, we get the points (1,−1), (−1, 1).

f(1,−1) = 2, f(−1, 1) = 2.

Now consider λ = 2/3. Then y = x. Putting into x2 + xy + y2 = 1, we
see

x2 + x2 + x2 = 1

So x = ±1/
√

3, and and since y = x, we get the points (1/
√

3, 1/
√

3),
(−1/

√
3,−1/

√
3).

f(1/
√

3, 1/
√

3) = 2/3, f(−1/
√

3,−1/
√

3) = 2/3.

So, the minimum of f is 2/3, achieved at (1/
√

3, 1/
√

3) and (−1/
√

3,−1/
√

3).

The maximum of f is 2, achieved at (1,−1) and (−1, 1).

20.(10 pts) (BONUS) A function f(x, y) is homogeneous of degree n (n a non-
negative integer) if f(tx, ty) = tnf(x, y) for all t, x, and y. For such a
function (sufficiently differentiable), prove that

x
∂f

∂x
+ y

∂f

∂y
= nf(x, y).

Solution.

Differentiate f(tx, ty) = tnf(x, y) with respect to t.

fx(tx, ty)x+ fy(tx, ty)y = ntn−1f(x, y).

Now set t = 1.
fx(x, y)x+ fy(x, y)y = nf(x, y).


